ADT7476A
http://onsemi.com
10
clock pulse to assert a stop condition. In read
mode, the master device overrides the
acknowledge bit by pulling the data line high
during the low period before the ninth clock pulse.
This is known as no acknowledge. The master then
takes the data line low during the low period
before the 10
th
 clock pulse, and then high during
the 10
th
 clock pulse to assert a stop condition.
Any number of bytes of data can be transferred over the
serial bus in one operation. However, it is not possible to mix
read and write in one operation because the type of operation
is determined at the beginning and cannot subsequently be
changed without starting a new operation. In the
ADT7476A, write operations contain either one or two
bytes, and read operations contain one byte.
To write data to one of the device data registers or read
data from it, the address pointer register must be set so the
correct data register is addressed. Then, data can be written
into that register or read from it. The first byte of a write
operation always contains an address stored in the address
pointer register. If data is to be written to the device, then the
write operation contains a second data byte that is written to
the register selected by the address pointer register.
This write operation is illustrated in Figure 18. The device
address is sent over the bus, and then R/W
 is set to 0. This
is followed by two data bytes. The first data byte is the
address of the internal data register to be written to, which
is stored in the address pointer register. The second data byte
is the data to be written to the internal data register.
When reading data from a register, there are two
possibilities:
1. If the ADT7476As address pointer register value
is unknown, or not the desired value, then it must
first be set to the correct value before data can be
read from the desired data register. This is done by
performing a write to the ADT7476A as before,
but only the data byte containing the register
address is sent, because no data is written to the
register (see Figure 19).
A read operation is then performed consisting of
the serial bus address; R/W
 bit set to 1, followed
by the data byte read from the data register (see
Figure 20.)
2. If the address pointer register is already known to
be at the desired address, data can be read from the
corresponding data register without first writing to
the address pointer register (see Figure 20).
It is possible to read a data byte from a data register
without first writing to the address pointer register, if the
address pointer register is already at the correct value.
However, it is not possible to write data to a register without
writing to the address pointer register, because the first data
byte of a write is always written to the address pointer
register.
In addition to supporting the send byte and receive byte
protocols, the ADT7476A also supports the read byte
protocol. See Intels System Management Bus Specifications
Revision 2 for more information.
If several read or write operations must be performed in
succession, the master can send a repeat start condition
instead of a stop condition to begin a new operation.
Figure 18. Writing a Register Address to the Address Pointer Register, then Writing Data to the Selected Register
0
SCL
SDA
1
0
1
1
A1    A0
D7    D6   D5   D4    D3   D2    D1    D0
ACK. BY
ADT7476A
START BY
MASTER
1
9
1
ACK. BY
ADT7476A
9
D7    D6   D5   D4    D3   D2    D1    D0
ACK. BY
ADT7476A
STOP BY
MASTER
1
9
SCL (CONTINUED)
SDA (CONTINUED)
FRAME 1
SERIAL BUS ADDRESS BYTE
FRAME 2
ADDRESS POINTER REGISTER BYTE
FRAME 3
DATA BYTE
R/W
Figure 19. Writing to the Address Pointer Register Only
0
SCL
SDA
1
0
1
1
A1    A0
D7    D6    D5    D4    D3    D2    D1
D0
ACK. BY
ADT7476A
STOP BY
MASTER
START BY
MASTER
FRAME 1
SERIAL BUS ADDRESS BYTE
FRAME 2
ADDRESS POINTER REGISTER BYTE
1
1
9
ACK. BY
ADT7476A
9
R/W
相关PDF资料
ADT7481ARMZ-1RL IC SENSOR TEMP 2CH ALARM 10MSOP
ADT7482ARMZ-REEL IC SENSOR TEMP 2CH ALARM 10MSOP
ADT7485AARMZ-R IC TEMP/VOLT DGL SENS SST 10MSOP
ADT7486AARMZ-RL IC TEMP SENS DGTL 2CH SST 10MSOP
ADT7488AARMZ-RL IC TEMP/VOLT DGTL W/SST 10MSOP
ADT7518ARQZ IC SENSOR TEMP QD ADC/DAC 16QSOP
AT30TS00-MAH-T SENSOR DGTL TEMP I2C/SMBUS 8WDFN
AT30TSE002B-MAH-T SENSOR DGTL TEMP I2C/SMBUS 8WDFN
相关代理商/技术参数
ADT7476AARQZ-REEL 功能描述:IC REMOTE THERMAL CTRLR 24-QSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 热管理 系列:dBCool® 标准包装:1 系列:- 功能:温度监控系统(传感器) 传感器类型:内部和外部 感应温度:-40°C ~ 125°C,外部传感器 精确度:±2.5°C 本地(最大值),±5°C 远程(最大值) 拓扑:ADC,比较器,寄存器库 输出类型:2 线 SMBus? 输出警报:无 输出风扇:无 电源电压:2.7 V ~ 5.5 V 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:SOT-23-8 供应商设备封装:SOT-23-8 包装:Digi-Reel® 其它名称:296-22675-6
ADT7476AARQZ-REEL7 功能描述:IC REMOTE THERMAL CTRLR 24-QSOP RoHS:是 类别:集成电路 (IC) >> PMIC - 热管理 系列:dBCool® 标准包装:1 系列:- 功能:温度监控系统(传感器) 传感器类型:内部和外部 感应温度:-40°C ~ 125°C,外部传感器 精确度:±2.5°C 本地(最大值),±5°C 远程(最大值) 拓扑:ADC,比较器,寄存器库 输出类型:2 线 SMBus? 输出警报:无 输出风扇:无 电源电压:2.7 V ~ 5.5 V 工作温度:-40°C ~ 125°C 安装类型:表面贴装 封装/外壳:SOT-23-8 供应商设备封装:SOT-23-8 包装:Digi-Reel® 其它名称:296-22675-6
ADT7476AARQZ-RL7 功能描述:板上安装温度传感器 MONITORS 5V/4 FANS RoHS:否 制造商:Omron Electronics 输出类型:Digital 配置: 准确性:+/- 1.5 C, +/- 3 C 温度阈值: 数字输出 - 总线接口:2-Wire, I2C, SMBus 电源电压-最大:5.5 V 电源电压-最小:4.5 V 最大工作温度:+ 50 C 最小工作温度:0 C 关闭: 安装风格: 封装 / 箱体: 设备功能:Temperature and Humidity Sensor
ADT7476ARQH 制造商:ONSEMI 制造商全称:ON Semiconductor 功能描述:dBCOOL Remote Thermal Controller and Voltage Monitor
ADT7476ARQH-REEL 制造商:ONSEMI 制造商全称:ON Semiconductor 功能描述:dBCOOL Remote Thermal Controller and Voltage Monitor
ADT7476ARQZ 功能描述:马达/运动/点火控制器和驱动器 MLTCH TDM FAN CTRLR RoHS:否 制造商:STMicroelectronics 产品:Stepper Motor Controllers / Drivers 类型:2 Phase Stepper Motor Driver 工作电源电压:8 V to 45 V 电源电流:0.5 mA 工作温度:- 25 C to + 125 C 安装风格:SMD/SMT 封装 / 箱体:HTSSOP-28 封装:Tube
ADT7476ARQZ-R7 功能描述:马达/运动/点火控制器和驱动器 MLTICH TDM FAN CTRLR RoHS:否 制造商:STMicroelectronics 产品:Stepper Motor Controllers / Drivers 类型:2 Phase Stepper Motor Driver 工作电源电压:8 V to 45 V 电源电流:0.5 mA 工作温度:- 25 C to + 125 C 安装风格:SMD/SMT 封装 / 箱体:HTSSOP-28 封装:Tube
ADT7476ARQZ-REEL 功能描述:马达/运动/点火控制器和驱动器 MLTICH TDM FAN CTRLR RoHS:否 制造商:STMicroelectronics 产品:Stepper Motor Controllers / Drivers 类型:2 Phase Stepper Motor Driver 工作电源电压:8 V to 45 V 电源电流:0.5 mA 工作温度:- 25 C to + 125 C 安装风格:SMD/SMT 封装 / 箱体:HTSSOP-28 封装:Tube